Reviving the Method of Particular Solutions
نویسندگان
چکیده
منابع مشابه
Reviving the Method of Particular Solutions
Fox, Henrici, and Moler made famous a “Method of Particular Solutions” for computing eigenvalues and eigenmodes of the Laplacian in planar regions such as polygons. We explain why their formulation of this method breaks down when applied to regions that are insufficiently simple and propose a modification that avoids these difficulties. The crucial changes are to introduce points in the interio...
متن کاملA localized approach for the method of approximate particular solutions
The method of approximate particular solutions (MAPS) has been recently developed to solve various types of partial differential equations. In the MAPS, radial basis functions play an important role in approximating the forcing term. Coupled with the concept of particular solutions and radial basis functions, a simple and effective numerical method for solving a large class of partial different...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
The Generalized Singular Value Decomposition and the Method of Particular Solutions
A powerful method for solving planar eigenvalue problems is the Method of Particular Solutions (MPS), which is also well known under the name “point matching method”. The implementation of this method usually depends on the solution of one of three types of linear algebra problems: singular value decomposition, generalized eigenvalue decomposition, or generalized singular value decomposition. W...
متن کاملEstimates on Neumann Eigenfunctions at the Boundary, and the “method of Particular Solutions” for Computing Them
We consider the method of particular solutions for numerically computing eigenvalues and eigenfunctions of the Laplacian on a smooth, bounded domain Ω in Rn with either Dirichlet or Neumann boundary conditions. This method constructs approximate eigenvalues E, and approximate eigenfunctions u that satisfy ∆u = Eu in Ω, but not the exact boundary condition. An inclusion bound is then an estimate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Review
سال: 2005
ISSN: 0036-1445,1095-7200
DOI: 10.1137/s0036144503437336